
Add to Cart
Cnc Carbide End Mill 2F Flat Endmill HRC45 Milling Cutter CVD Coated 1.5mm 6mm
Quick Detail:
Description:
1. Good heat resistance, its heat resistance temperature can reach 1100 ℃, and the maximum processing hardness can reach 52HRC. After processing, the shape accuracy and surface roughness of the processed workpiece are good; Therefore, the carbide end mill can avoid the phenomena of accretion, chipping, wear, tool breakage, etc. during the processing and production process, extend its service life, and effectively improve the product quality of the processed workpiece.
2. The number of commonly used edges is 2F, 3F, 4F, 5F, 6F, etc. The more the number of edges, the better the effect after finishing.
3. The outline of the end milling cutter is shown in the figure. The outer edge and bottom surface of the carbide end mill are provided with milling teeth to form a cutting edge, which is used to mill the vertical and horizontal surfaces of the workpiece.
4. In general, the carbide end milling cutter is very suitable for 2D shaped workpieces.
Milling parameters:
HRC45 Carbide End Mill | Tool length | fz&v | |||||
Short | 1 | ||||||
Long1 | 0.9 | ||||||
Overlength | 0.8 | ||||||
Speciality | 0.6 | ||||||
Type | Material | Strength N/mm²
Hardness HRC | Cooling | ||||
Air | Dry cutting | Lubricating fluid | |||||
P | PI | P1.1 | Non alloy structural steel, free cutting structural steel, carburized steel and quenched and tempered steel | <700 | √ | √ | √ |
P1.2 | quenched and tempered steel | <1200 | √ | √ | √ | ||
P2 | P2.1 | Alloyed nitrided steel, carburized steel and quenched and tempered steel | <900 | √ | √ | √ | |
P2.2 | Tool steel, bearing steel, spring steel and high-speed steel | <1400 | √ | √ | |||
P3 | P3.1 | Tool steel, bearing steel, spring steel and high-speed steel | <900 | √ | √ | √ | |
P3.2 | Tool steel, bearing steel, spring steel and high-speed steel | <1500 | √ | √ |
![]() | Sloting | |||||||||||
Vc (m/min) | fz(mm/Tooth) | |||||||||||
Diameter | ||||||||||||
2 | 4 | 6 | 8 | 10 | 12 | 16 | 20 | |||||
112 | 0.01 | 0.018 | 0.026 | 0.034 | 0.041 | 0.048 | 0.06 | 0.069 | ||||
92 | 0.01 | 0.017 | 0.025 | 0.032 | 0.038 | 0.045 | 0.056 | 0.065 | ||||
100 | 0.01 | 0.018 | 0.026 | 0.034 | 0.041 | 0.048 | 0.06 | 0.069 | ||||
72 | 0.009 | 0.015 | 0.022 | 0.028 | 0.034 | 0.04 | 0.05 | 0.058 | ||||
64 | 0.01 | 0.018 | 0.025 | 0.032 | 0.039 | 0.045 | 0.057 | 0.066 | ||||
56 | 0.009 | 0.016 | 0.023 | 0.029 | 0.036 | 0.041 | 0.052 | 0.06 |
![]() | Roughing | |||||||||||
Vc (m/min) | fz(mm/Tooth) | |||||||||||
Diameter | ||||||||||||
2 | 4 | 6 | 8 | 10 | 12 | 16 | 20 | |||||
228 | 0.018 | 0.031 | 0.045 | 0.057 | 0.070 | 0.081 | 0.101 | 0.118 | ||||
208 | 0.017 | 0.029 | 0.042 | 0.054 | 0.065 | 0.071 | 0.095 | 0.11 | ||||
184 | 0.018 | 0.031 | 0.045 | 0.057 | 0.070 | 0.081 | 0.101 | 0.118 | ||||
144 | 0.015 | 0.026 | 0.037 | 0.048 | 0.058 | 0.068 | 0.085 | 0.098 | ||||
132 | 0.017 | 0.03 | 0.042 | 0.054 | 0.066 | 0.077 | 0.096 | 0.112 | ||||
112 | 0.015 | 0.027 | 0.039 | 0.05 | 0.060 | 0.07 | 0.088 | 0.102 |
![]() | Finish | ||||||||||
Vc m/min | fz(mm/Tooth) | ||||||||||
Diameter | |||||||||||
2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 | ||
332 | 0.028 | 0.05 | 0.07 | 0.091 | 0.11 | 0.128 | 0.144 | 0.16 | 0.173 | 0.186 | |
272 | 0.026 | 0.046 | 0.066 | 0.085 | 0.103 | 0.12 | 0.135 | 0.15 | 0.162 | 0.173 | |
304 | 0.028 | 0.05 | 0.07 | 0.091 | 0.11 | 0.128 | 0.144 | 0.16 | 0.173 | 0.186 | |
212 | 0.023 | 0.041 | 0.059 | 0.076 | 0.092 | 0.107 | 0.121 | 0.134 | 0.145 | 0.155 | |
196 | 0.027 | 0.047 | 0.067 | 0.086 | 0.104 | 0.122 | 0.137 | 0.152 | 0.165 | 0.177 | |
168 | 0.024 | 0.043 | 0.061 | 0.079 | 0.095 | 0.111 | 0.125 | 0.139 | 0.150 | 0.161 |
Specification | Flute Dia(φ) | Flute Length (C) | Shank Dia(D) | Overall Length(L) |
φ1*3*d4*50L | 1 | 3 | 4 | 50 |
φ1.5*4*d4*50L | 1.5 | 5 | 4 | 50 |
φ2*5*d4*50L | 2 | 5 | 4 | 50 |
φ2.5*7*d4*50L | 2.5 | 7 | 4 | 50 |
φ3*8*d4*50L | 3 | 8 | 4 | 50 |
φ4*10*d4*50L | 4 | 10 | 4 | 50 |
φ5*13*d6*50L | 5 | 13 | 6 | 50 |
φ6*15*d6*50L | 6 | 15 | 6 | 50 |
φ8*20*d8*60L | 8 | 20 | 8 | 60 |
φ10*25*d10*75L | 10 | 25 | 10 | 75 |
φ12*30*d12*75L | 12 | 30 | 12 | 75 |
φ14*45*d14*100L | 14 | 45 | 14 | 100 |
φ16*45*d16*100L | 16 | 45 | 16 | 100 |
φ18*45*d18*100L | 18 | 45 | 18 | 100 |
φ20*45*d20*100L | 20 | 45 | 20 | 100 |
Instructions:
1. Before using the carbide end mill, please measure the tool deflection. If the tool deflection accuracy exceeds 0.01mm, please correct it before cutting.
2. The shorter the carbide e extends out of the collet, the better. If the tool extends out longer, reduce the speed, feed speed or cutting amount.
3. In case of abnormal vibration or sound during cutting, please reduce the speed and cutting amount until the situation is improved.
4. Spray type and air jet type are preferred for steel cooling, which can improve the use effect of carbide end mill.
5. Note: Not suitable for low speed machines such as rotary table and electric hand drill.
Applications:
Pre-hardened Steel, stainless steel, Die steel, steel plate, Heat-resistant steel,pipe, copper and aluminum, cast iron, Nonferrous Metal, Wood, Plastic,FRP and sO on. General-purpose operation slotting, rilling, profiling.
Q1. The tool breaks when cutting in or pulling out the workpiece
The feed rate and cutting depth can be reduced, and the cutting edge length can be shortened to the minimum of the necessary length.
Q2. Tool breaks during normal machining
Reduce the feed rate and cutting depth.
The tool shall be passivated.
Replace the clamp or spring collet.
The tool with high cutting edge number changes the tool with low cutting edge number to improve chip removal and prevent chip blockage.
Replace dry milling with wet milling (using cutting fluid), and use it with vortex tube gun to reduce tool temperature and avoid tool overheating.
If the wet milling fluid supply direction is changed from the front to the oblique rear or transverse top, the coolant flow should be sufficient.
Q3. The tool breaks when the feed direction changes
(1) Use arc interpolation (NC machine tool), or temporarily stop (temporarily) feeding.
(2) Reduce (decrease) the feed before and after the direction change.
(3) Replace the clamp or spring collet.
Q4. Problem: Part of the blade tip breaks
Chamfer the corners with manual grinding.
Change down milling to up milling.